Homework - Magnetism II

1 Force between magnetic dipoles

A magnetic dipole with dipole moment \vec{m}_1 is placed at the origin. Another dipole with dipole moment \vec{m}_2 is placed at \vec{r} . Find the force between the dipoles. What is the force in the case that all vectors involved are pointing in the same direction, i.e.

$$\vec{m}_1 = m_1 \hat{z}, \qquad \vec{m}_2 = m_2 \hat{z}, \qquad \vec{r} = r \hat{z}?$$

2 Expansion in spherical harmonics [*]

A magnetic dipole with dipole moment $\vec{m} = m\hat{z}$ is placed at $\vec{r} = R\hat{z}$. Expand the resulting magnetic scalar potential Φ_m in spherical harmonics. $(\vec{B} = -\vec{\nabla}\Phi_m)$

3 Levitation of a superconductor [**]

A magnetic dipole moment \vec{m} is at a distance R from the center of a superconducting ball of radius a. (Of course, R > a.) Assume that the dipole moment vector \vec{m} is pointing in the direction of the center of the ball. Find the force between the ball and the dipole moment. **Hint:** You can use the results from the previous problems.

